PARALLELIZED DEEP CONVOLUTIONAL NEURAL NETWORKS FOR PATHOLOGY DETECTION AND LOCALIZATION IN CHEST X-RAYS

Ravidu Suien Rammuni Silva

A dissertation submitted in partial fulfilment of the requirement for Bachelor of Science (Honours) degree in Computer Science

Department of Computing

Informatics Institute of Technology, Sri Lanka in collaboration with University of Westminster, UK

ABSTRACT

Radiography is a prevalent method of medical diagnosis, especially in humans. Its popularity and increased usage are due to the affordability and the convenience of its procedures. This is used for a wide variety of cases in medical environments. Out of those, Chest Radiography or Chest X-Rays holds a significant place due to the numerous diseases that could be diagnosed by Chest X-Rays. These diseases vary from low-risk diseases to high-risk, life-threatening diseases. Due to this, accurate diagnosis of Chest X-Rays is considered very crucial. However, human errors are inevitable. In some parts of the world, medical professionals with extensive experience in Chest X-Ray diagnosis are scarce in numbers. Machine Learning attempts to provide a solution for these two issues of misdiagnosis and lack of medical professionals. Existing attempts are mostly based on Deep Convolutional Neural Networks. This dissertation presents a novel way of utilizing multiple neural networks for the purpose of accurate detection and localization of diseases present in Chest X-Ray images. The proposed algorithm creates a range of new pathways to conduct research in a variety of fields and use cases. However, this dissertation primarily aims to prove the strengths and advantages of the proposing algorithm for Chest X-Ray classification within a well-defined scope. The dissertation further presents the limitations, and its drawbacks backed up with extensive testing and evaluation procedures and techniques employing the experts.

Keywords: Deep Learning, Machine Learning, Deep Neural Networks, Medical AI, CXR Classification, Image Processing