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Abstract  

Predicting bugs is generally   a huge contesting work around  the software development and 
service   process. Predicting bugs of the software in earlier phases early causes a big 
impact,it   is an essential task which can increase the good, accuracy , economy   and 
decrease the all value   of a software.Furthermore , building a robust system to predict and 
clarify potential bugs is a contest task. In version control code  pushing with a small amount 
of faults to a repository, is an uncommon  scenario in the working environment. To describe  
bugs before pushing to GIT build on Machine Learning and GIT hooks, is a system 
proposed in this thesis. Also many examinations and surveys have been held through the 
software developers who have experience and skill in the set for a definite time period.

Subject Description: Metrics—complexity measures, performance measures 
Keywords: Software bugs, bugs prediction, GIT commits, future bugs
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