
PREDICT TECHNICAL DEFECTS IN STATIC CODE ANALYSIS

M. A. Dilan Tharidu Sangeeth

A dissertation submitted in partial fulfilment of the requirement for Bachelor of Science (Honours)
degree in Software Engineering

Department of Computing

INFORMATICS INSTITUTE OF TECHNOLOGY

In collaboration with
The University of Westminster, UK

2020

Page 1

Abstract

Predicting bugs is generally a huge contesting work around the software development and
service process. Predicting bugs of the software in earlier phases early causes a big
impact,it is an essential task which can increase the good, accuracy , economy and
decrease the all value of a software.Furthermore , building a robust system to predict and
clarify potential bugs is a contest task. In version control code pushing with a small amount
of faults to a repository, is an uncommon scenario in the working environment. To describe
bugs before pushing to GIT build on Machine Learning and GIT hooks, is a system
proposed in this thesis. Also many examinations and surveys have been held through the
software developers who have experience and skill in the set for a definite time period.

Subject Description: Metrics—complexity measures, performance measures
Keywords: Software bugs, bugs prediction, GIT commits, future bugs

Page 3

	Declaration
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	1.1 OverView
	1.2 Background
	1.3 Problem Domain
	1.4 Related Works
	1.5 Project Aim
	1.6 Project Scope
	1.7 Project Objective
	1.7.1 Operational Objectives
	1.7.2 Academic/Research Objectives

	1.8 Motivation
	1.9 Resource Requirements
	1.9.1 Hardware Requirements
	1.9.2 Software Requirements

	1.10 Project Document Structure
	Chapter 2: Literature Review
	Chapter 3: Software Requirements Specification
	Chapter 4: Project Management
	Chapter 5: System Architecture and Design
	Chapter 6: Implementation
	Chapter 7: Testing and Evaluation
	Chapter 8: Conclusion

	Chapter 2 - Literature Review
	2.1 Chapter Overview
	2.2 Overview of the Proposed Solution
	2.2.1 What is a Defect
	2.2.3 Why use GitHub metadata

	2.3 Bug prediction
	2.3.1 Source Code Plagiarism Detection Engine(Plaggie)
	2.3.2 Approaches of bugs prediction
	2.3.3 single version approach
	2.3.4 Change log approach
	2.3.5 MACLI Approach
	2.3.6 Other approaches

	2.4 Natural Language Processing (NLP)
	2.4.1 OMAMC Technique
	2.4.2 Parsing and Lexical
	2.4.3 parsing strategy and grammar analysis

	2.5 Review of Existing Work
	2.6 Research gap
	2.7 Chapter Summary

	Chapter 3 - System Requirement Specification
	3.1 Chapter Overview
	3.2 Stakeholder Analysis
	3.2.1 Describe the pressure points of the diagram.
	3.2.2 Stakeholders and Roles

	3.3 Analysis of Requirement Elicitation Methodologies
	3.3.1 Observing Existing Systems
	3.3.2 Questionnaires Delivery
	3.3.3 Literature Review
	3.3.4 Interviews

	3.4 Execution of Requirement Elicitation
	3.4.1 Questionnaires
	3.4.1.3 FORMAL INTERVIEWS WITH DOMAIN EXPERTS

	3.5 Analysis Models
	3.5.1 Use Case Diagram
	3.5.2 Use Case Descriptions

	3.6 Functional Requirements
	3.7 Non Functional Requirements
	3.8 Chapter Summary

	Chapter 4 - Project Management
	4.1 Chapter Overview
	4.2 Research Methodology
	4.2.1 Development Methodology
	4.2.2 Project management methodology

	4.3 Activity Schedule
	4.4 Chapter Summary

	Chapter 5 - System Architecture and Design
	5.1 Chapter Overview
	5.2 Rich Picture
	5.3 Design methodology
	5.3.1 Selection of design methodology

	5.4 High Level Design
	5.4.1 The High-Level architecture
	5.4.2 The Domain model
	5.4.3 Work flow of the solution
	5.4.3 Diagram of Activity
	5.4.4 Diagrams of Sequence
	5.4.5 Diagram of State Machine

	5.5 System Architecture
	5.5.1 Parser and Lexers
	5.5.2 Parse Trees

	5.6 Design Goals
	5.7 Chapter Summary

	Chapter 6 - Implementation
	6.1 Chapter Overview
	6.2 Selection of Technologies
	6.2.1 Selection of Version Control
	6.2.2 Basic Implementation of System interface

	6.3 Selection of Tools and Libraries
	6.3.1 Selection of the Java tool.
	6.3.2 Selection of the Java servlet.
	6.3.3 Selection of the NLP library.

	6.4 Implementation of the Classifier
	6.4.1 Issues massage Classifier

	6.5 Implementation of the code skeleton
	6.5.1 Parser
	6.6 Implementation of GitHub Configuration
	6.6.1 congiure Git hook

	6.7 Chapter Summary

	Chapter 7 - Testing and Evaluation
	7.1 Testing
	7.1.1 Chapter Overview
	7.1.2 Goals and Objectives of Testing
	7.1.3 Testing Methodology
	7.1.4 Testing Criteria
	7.1.5 Testing Functional Requirements
	7.1.6 Testing Non-Functional Requirements
	7.1.7 Limitation of the Testing
	7.1.8 Chapter Summary

	7.2 EVALUATION
	7.2.1 Chapter Overview
	7.2.2 Evaluation Criteria
	7.2.3 Evaluation Process
	7.2.4 Evaluation Results
	7.2.5 Results from Industrial and Domain Experts

	Chapter 8 - Conclusion
	8.1 Chapter Overview
	8.2 Achievement of Aims and Objectives
	8.2.1 Achievement of Aim
	8.2.2 Achievement of Objectives

	8.3 Utilisation of Course Material
	8.4 Challenges Faced and Solutions
	8.6 SLEP Analysis
	8.6.2 Legal
	8.6.3 Ethical
	8.6.1 Social

	8.7 Contribution

	REFERENCE
	Appendix A: Gannt Chart
	Appendix B: Feedback from Industrial and Domain Experts
	Appendix C: Questionnaire for Platform Evaluation

