

ANALYZING THE IMPACT OF RUBY’S DYNAMIC

FEATURES ON PERFORMANCE

Rajika Abeyrathne

A dissertation submitted in partial fulfillment for the requirement for Master of

Science degree in Advanced Software Engineering

Department of Computing

Informatics Institute of Technology, Sri Lanka

in Collaboration with

University of Westminster

2020

i

Abstract

Programming languages are at the center of software engineering. At the design stage of a

project, best suited technologies are evaluated to implement a solution. One of the most

important decisions is the programming language that would be used to implement a system.

The requirements of a project are evaluated, and programming languages are chosen. The

programming languages are chosen based on their features, such that they could satisfy all the

requirements of the solution to be built. Language syntax, semantics and compatibility are often

considered. However, in almost all the cases, performance is considered as a major deciding

factor. Specially if the solution demands specific performance measures.

Ruby is a widely used programming language for web development. It is a dynamic and

interpreted language which is loved by developers in the web development community. One of

the major reasons for the wide usage is its proper object-oriented nature as an interpreted

language and the elegant syntax. However, it is a widely known fact that its performance is not

the best among other choices. The performance gap is due to various factors such as the usage

of an interpreter, addition of metaprogramming with dynamic capabilities. There have been

several efforts to improve the performance of Ruby. Introducing JIT was a significant addition

to the traditional interpreter. This has shown promising results with various use cases. Few

other previous works have been done in the research level which has also shown overall

performance improvements.

This dissertation focuses on how dynamic features in Ruby affects the performance. A

methodology is presented to quantify the performance gap of dynamic features in Ruby by

providing empirical data. Few dynamic features were chosen to be investigated. The

implementation consists of two compilers, where one would act like the Ruby interpreter. This

was termed as the un-optimized compiler in this dissertation. The other compiler provides

optimizations by providing several restrictions to the language design. The latter compiler was

termed as the optimized compiler. Ruby source is provided as the input artifact, where the

compiler pipeline converts Ruby to Go, and eventually compile Go to machine code. The

baseline for performance was established using the un-optimized compiler. The optimized

compiler was compared against the un-optimized compiler. The major unit of measurement

was time. However, CPU, memory usage was measured against different use cases.

Keywords: Ruby, Interpreter, Performance, Dynamic features, Compiler, Go.

