
Review on Textual Data Mining for Reviewer
Recommendation in Pull-Based Distributed 

Software Development
Raveen Savinda Rathnayake

College of Computer Science and Engineering
University of Westminster

London, UK
w1610086@my.westminster.ac.uk

Guhanathan Poravi
Department of Software Engineering
Informatics Institute of Technology

Colombo, Sri Lanka
guhanathan.p@iit.ac.lk

Abstract— Distributed Software development process has 
dramatically changed over the last decade due to the 
integration of social collaborative development environment.
The pull-based software development methodology made its 
mark in the open source distributed development as it is a 
convenient and effective system to organise collaborative 
contribution. Code reviews for software projects have been a 
best practice in software engineering. With the emerge of pull-
based software development methodology, code reviewers 
faced difficulty in reviewing the contributions because of the 
higher number of incoming pull requests. In order to address 
this problem, reviewer recommendation systems have been 
implemented. In these systems, textual data mining techniques
have been applied. This paper focuses on identifying the 
different approaches in terms of textual data mining used in 
the domain of the reviewer recommendations in pull-based
software development and identifies their drawbacks and room 
for improvement. This paper contains the initial part of 
ongoing research and in the future, we hope to use this 
knowledge to come up with a solution that addresses the 
identified drawbacks and the identified improvements.

Keywords—Pull Request, Text Mining, Machine Learning, 
Reviewer Recommendation, Distributed Software Development

I. INTRODUCTION

In this section, we present a brief introduction to the pull-
based development methodology. In section 2, we provide 
the background with an analysis of the contribution process 
of the pull-based development mechanism, followed by the 
problem which states what we focus on this paper. Section 3 
presents the setup we used to capture the various aspects in 
terms of knowledge for the analysis of this paper. Section 4
provides the related work and existing solutions. Section 5
evaluates the existing solutions and provides what has been
missing in the related work and finally, in section 6, the 
paper is concluded with future work.

The distributed Software development process has 
dramatically changed over the last decade due to the
integration of social collaborative development environment
[1]. The pull-based software development methodology
made its mark in the open source distributed development as 
it is a convenient and effective system to organise 
collaborative contribution [2]. Pull-based development 
provides a great advantage in terms of the process 
automation compared to the traditional open source 
collaborative mechanisms such as patching through mailing 
lists or Bugzilla [3]. Nowadays social coding community 
platforms such as GitHub, Bitbucket, GitLab are using this
pull-based model in their platforms.

II. BACKGROUND

Due to the lower entry barrier for the contributions, the
pull-based methodology integrated social code hosting sites
notably GitHub, became popular among developers. The 
contribution process in a pull-based software development 
environment can be done via a pull-request (PR). An external
contributor can contribute to a project hosted in one of the
above-mentioned social coding platforms by sending a PR 
which contains all the code changes. The summarized
version of the contribution process takes place in a pull-
based social code platform is shown in Figure 1. In general,
Core team member, Contributor and Commenter are the 
three main roles involves in a contribution process. A core
team member is the one who decides whether to accept or 
reject a PR and has the permission to directly commit code 
changes to the project repository. The contributor is the one 
who does the contributions and Commenter can add 
comments to the PR often suggesting improvements. A core
team member can also leave comments on the PR. Hence,
commenters and core team members can also be named as 
reviewers as well.

Figure 1: Summarised contribution process

The contribution process starts with a contributor forking
the main project repository. Then contributor adds
contributions to the forked local repository and sends a PR to 
the main repository which contains all the local code 
changes. After that core members and commenters can go 
through the PR and add suggestions and improvements as 
comments. Based on the comments received, then the 
contributor makes changes and pushes them to the existing 
PR. Finally, a core team member will decide whether to 
accept these changes and merge the PR to the main 
repository or reject and close the PR. Figure 2 illustrates an
actual PR evaluation. This PR with id 34511 was sent to
GitHub hosted Ruby on Rails project repository. The
contributor TomSpencerLondon made the PR and core team 
member gmcgibbon approved and merged the PR.

2019 5th International Conference for Convergence in Technology (I2CT) 
Pune, India. Mar 29-31, 2019

978-1-5386-8075-9/19/$31.00 ©2019 IEEE 1

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 16:28:50 UTC from IEEE Xplore.  Restrictions apply. 


