
MONITORING & MANGING DYNAMIC DISTRIBUTED SYSTEMS

Dileban Karunamoorthy and Neomal Devinuwara

Department of Computer Science, Informatics Institute of Technology

ABSTRACT

The growing number of middleware for building
olstributed systems has made it increasingly difficult to
monitor and manage them. This is especially the case
when different and often interacting systems based on
different middleware technologies are deployed on a
single site. Proper administration of such systems
requires proper monitoring, which in tum requires the
extraction of quality information from the underlying
systems at runtime. The proxy pattern, although
seemingly simple, can be put to good effect to address
problems of this nature. By dynamically generating
proxies capable of intercepting and logging invocations
the characteristics, behavior and relationships of
processes can be ascertained at runtime, providing a
global view on the behavior of entire systems in
operation. This paper addresses these two concerns, the
need to have a comprehensive global view on distributed
systems and the viability of the proxy pattern as a
technique for achieving it.

1. INTRODUCTION

Distributed computing has literally revolutionized the
way organizations and people work, so much that the
terms distribution and computing have become
inseparable. Various middleware frameworks for
building distributed applications have evolved over the
years, each based on different conceptual models, geared
to solve different classes of problems, and based on very
different technologies. CORBA for example, is a
specification for building general purpose distributed
object-based applications and addresses numerous classes
of problems [1]. Implementations exist for different
platforms and in different languages. Other popular
examples include Jini, based on a general purpose
service-oriented model with emphasis on the formation of
dynamic or spontaneous coordination systems called
federations [2]; JavaSpaces, a part of Jini, provides
temporal and referential uncoupling of processes based
on a Linda-like coordination model [3]; JXTA, a special
purpose framework providing an infrastructure for
building peer-to-peer applications [4]; Java RMI and .Net
Remoting, simple object and event based models for
remote invocation;

While these are just a few examples, the growing
numbers have made it increasingly difficult for
organizations to monitor and administer them. This is
especially the case when organizations find themselves

having to deploy multiple middleware layers to address
different organizational concerns. Often these systems are
also integrated via gateways to reuse existing
developments and business logic. The problem is further
compounded by the very nature of the technologies
involved. For example, while some frameworks mandate
the use of specific protocols for client-server
communication, others impose no such restrictions, using
any proprietary protocol. Systems based on frameworks
like Jini are very dynamic in nature, allowing a collection
of independent processes to announce their presence, find
other processes and form coordinating federations that
will soon disintegrate once the task at hand is complete.
In contrast, systems based on CORBA tend to be more
static in nature, with compile-time bindings to stubs.
(CORBA however also possesses a dynamic aspect like
Jini, with the inclusion ofDII and DSI [5])

The lack of global view on the systems in operation
makes it hard to ascertain the overall efficiency and usage
of the systems. Such a view would require capturing key
information at runtime. It is common though for
enterprise level applications and some middleware
implementations to include facilities for logging
information at various points in the execution flow. Often
such logging is enabled by the setting of a flag in a
configuration file and making use of logging frameworks
such as Log4J [6]. While such information is useful for
tracing and debugging errors, they can prove to be too
inadequate for understanding the behavior system as a
whole over a period of time.

What is required is the extraction of key temporal
and non-temporal information such as method level
interactions between processes; data exchanged via
method parameters; locations; operating platform details;
hardware resource usage; network broadcasts; etc. and
the presentation of such information in summarized
tabular and graphical forms (topological views, graphs,
etc.), that can help administrators make informed
decisions on the behavior of the systems over a period.

2. MOTIVATION

Capturing such key information can provide useful
insights. For example, being able to observe client-server
interactions can help not only in tracing and debugging
errors, but also in analyzing load distributions and
performance bottlenecks across the system over a period
of time. Such information, together with details on
client/service locations and hardware resource usage can
help administrators pin-point performance problems or

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 25,2020 at 17:55:36 UTC from IEEE Xplore. Restrictions apply.

