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Abstract—Automated Machine Learning is a research area 
which has gained a lot of focus in the recent past. But the 
various approaches followed by researchers and what has been 
disclosed by the available work is neither properly documented 
nor very clear due to the differences in the approaches. If the 
existing work is analyzed and brought under a common 
evaluation criterion, it will assist in continuing researches. This 
paper presents an analysis of the existing work in the domains 
of autoML, hyperparameter tuning and meta learning. The 
strongholds and drawbacks of the various approaches and 
their reviews in terms of algorithms supported, features and 
the implementations are explored. This paper is a results of the 
initial phase of an ongoing research, and in the future we hope 
to make use of this knowledge to create a design that will meet 
the gaps and the missing links identified.
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I. INTRODUCTION

This section introduces the domain ‘Automated Machine 
Learning’ with some background information, the identified 
problem in the domain and the necessity of addressing the 
problem.

A. Background 
Machine learning is defined as the “field of study that 

gives computers the ability to learn without being explicitly 
programmed” [1]. Though machine learning makes it 
possible for computers to learn without human interaction, 
human effort is required when the machine learning systems
are being built [2]. In low level, machine learning systems 
are just statistical modelling algorithms or ensembles of 
algorithms that are developed to work well in a specific use 
case. A machine learning model designed to identify cats 
from dogs will not work well on detecting human age from a 
picture. The statistical model built for one use case, was 
developed by choosing an algorithm from many possibilities 
and was tweaked as necessary so that it would work well, but 
only on that particular dataset. So there is a need to create 
separate statistical models to each and every dataset we come 
across making the machine learning process inefficient.

According to a KDNuggets poll conducted in 2015 [3],
within next ten years, most of the expert level predictive data 
science tasks will be automated. This is supported by the fact 
many domain specific tools (e.g., Google Prediction API, 
Google CloudML, AzureML, BigML, Dataiku, DataRobot, 
KNIME, and RapidMiner) have surfaced in the near past to 
automate some parts of the machine learning pipeline, while 
many researches are underway to build tools that will 
completely automate the process. AutoML is a term coined 
in 2015 by CheLearn [4] to specify these set of tools and 

researches. AutoML is defined as a “software capable of 
being trained and tested without human intervention”

B. Problem & Motivation 
Designing an effective learning model is often tedious 

and only done well by experts with deep knowledge of 
machine learning algorithms and domain expertise. Most 
others just choose an algorithm by intuition and go ahead 
with whatever the default values the parameters were 
assigned by the learning tool they are using. Sometimes they 
use brute force techniques to find the best performing model, 
but with infinite possibilities of algorithms and parameters, it 
becomes highly infeasible [5]. So even though the definition 
of machine learning makes it seem like there won’t be any 
programming required, in reality it demands large hours of
tedious programming to build a learning model.

Machine learning is arguably the center of Artificial 
Intelligence with many disciplines relying on it [6]. But lack 
of experts in machine learning makes the development of AI 
constrained and slow paced. An off-the-shelf solution that 
can be used to build learning models even by novice 
developers to any given use case, will be a huge turning 
point in AI world.

II. STUDY SETUP

We started gaining the necessary domain knowledge with 
the literature survey. We identified three domains that are 
linked with automated statistical modelling,

1. AutoML 
2. Hyperparameter Tuning 
3. Meta-learning 

We came across 28 primary researches under these domains 
and identified different types of approaches used, which is 
discussed in Section 4. We identified two main such 
approaches, fully-automated and semi-automated and 
explored more on these. We identified six main solutions 
developed by researchers with different pros and cons, as 
discussed in Section 6. 

III. AUTO-ML

The umbrella term AutoML coined from ‘Automated 
Machine Learning’ [4] refers to the large scale automation 
of a wide spectrum of the machine learning process beyond 
the traditional model-creation, such as data pre-processing, 
meta-learning, feature learning, model searching, 
hyperparameter optimization, classification/regression, 
workflows generation, data acquisition and reporting. These 
black-box learning machines gained popularity after 
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ChaLearn initiated AutoML Competitions [4] in 2015. 
Started as a ‘benchmark for automated machine learning 
systems that can be operated without any human 
intervention’ the challenge focused on automating 
hyperparameter tuning and model selection for classification 
learnings.  

Even though there were many promising systems 
emerged from these competitions and recently we have been 
introduced to some commercial level AutoML systems by 
Google [7] and H2O.ai [8], the majority of the concepts and 
researches are in a very early stages. Researchers have used 
varieties of statistical theories like regularization, Bayesian 
priors, Minimum Description Length (MDL), Structural 
Risk Minimization (SRM), bias/variance tradeoff and 
genetic programming to tackle the autoML problem but 
ending up in a very distinct and inconsistent results. Further 
researches are required to find the best suiting techniques 
that are generic and works consistently.  

Two main concepts in this research area, hyperparameter 
tuning and meta-learning are analyzed below, 

A. Hyper-parameter tuning 
Machine learning algorithms are in fact statistical 

functions aimed at minimizing some variant of a cost 
function. The cost function depends on a set of parameters 
called hyperparameters that make up the algorithm. For a 
specific dataset, to get the efficient learning model the 
parameters need to be set to the optimal value specific to 
that dataset. Till recent past, hand-tuning these parameters 
by domain experts have been the only way to find the 
parameter setting [9]. Since the hyperparameters can take up 
any value, choosing the optimal one becomes extremely 
tedious.  Recently however, hyperparameter optimization 
techniques like Regression Trees, Gaussian Processes and 
density-estimation have been used to automate this tuning 
process.  

The concept of hyperparameter optimization was 
originated in neural networks as there can be overwhelming 
number of parameters in a neural network. Later these 
concepts were needed even in machine learning domains 
with few hyperparameters, as datasets tend to become too 
large to hand-tune. Bayesian optimization has emerged as a 
successful candidate for hyperparameter tuning. It is a 
probabilistic model that captures relationship between 
hyperparameter settings and their performance, and uses this 
model to iteratively evaluate, choose and update the most 
promising settings. Techniques like random search and grid 
search [10] are used underneath these approaches. 

B. Meta-learning  
Meta-learning is yet another concept getting popularity 

in the recent times. Each model trained on a dataset 
contributes to the understanding of the data. Even if a model 
performed poorly, that says something about the dataset. 
These results combined, can create a knowledge system that 
can be used on similar datasets. This is the concept behind 
meta-learning. Meta-learning uses attributes like data set 
size, the number of features, and various aspects about the 
features along with the performance data. It is used to find 
good instantiations of learning models from the knowledge 
of previous tasks [11]. When this data generated by 
researches all over the world, is stored and continuously 
updated in a public repository, it creates an invaluable 

knowledge ecosystem that can help build an effective 
machine learning workflow. 

IV. EXISTING WORK

The existing work on tracking framework evolution and 
code generation is presented in this section.

There has been substantial interest in researches around 
autoML systems in the recent past. Thornton [12] was one of 
the earliest researchers to propose hyperparameter tuning. He 
used Sequential Model-based Bayesian Optimization to 
achieve automation in parameter tuning. Several researchers
followed his initial work and improved the concept further.

Fig. 1. Typical design of an autoML system 

We can categorize possible approaches to track 
framework evolution, into two main types,

1) Automated approches 
2) Semi-automated apporaches 

A. Automated approches 
Automated approaches try to completely automate the 

machine learning process. Even though it is the ultimate 
goal of all these researches, a complete automation has 
proved to be very challenging task even after the current 
technological advancements. We identified four researches 
which have achieved varied success in complete automation 
and analyzed their work. 

Auto-WEKA (2012) [12] is the earliest research 
involved in automating the learning process. They 
formulated the problem into a formal study area dubbed 
‘Combined Algorithm Selection and Hyperparameter 
optimization’ (CASH) problem. They came up with a 
concept to optimize empirical performance by automatically 
choosing an algorithm from WEKA Java package and its 
hyperparameters for a given dataset. Auto-WEKA used 
Bayesian Optimization techniques, and in particular 
Sequential Model-based Optimization that can work in both 
categorical and continuous hyperparameters. It iteratively 
calculates the dependence of cross-validation loss function 
of a hyperparameter setting, uses machine learning to 
choose the best candidate configuration of hyperparameters 
and updates the model with new datapoint obtained. In 2017 
Auto-WEKA 2.0 [13] was released improving on the first 
package by adding support for regression algorithms and 
parallel runs. It also considered tree-based Bayesian 
optimization methods as it yielded more promising results 
than the predecessor. In the comparisons below we consider 
both Auto-WEKA and Auto-WEKA 2.0 to be the same. 
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Fig. 2. Auto-WEKA Parameter Space 

Hyperopt-Sklearn (2014) [14] was heavily inspired by 
Auto-WEKA with more focused on bringing similar 
functionalities to python. It uses the infamous Scikit-learn 
python package [15] as algorithms base with the underlying 
concepts being similar to Auto-WEKA. It sets up 
hyperparameters as a search space of random variables and 
uses Scikit-learn algorithms to train and validate the model 
based on the objective function and finally uses hyperopt 
optimization library to optimize parameters. The objective 
function is typically cross-validation, the negative degree of 
success on held-out samples. It also improved the scalability
issues found in Auto-WEKA. 

Fig. 3. Hyperopt Search Space 

AUTO-SKLEARN (2015) [16] continued on the CASH 
problem introduced in Auto-WEKA and improved the 
existing autoML concepts like Bayesian optimization by 
making use of performance data of the past tries on similar 
dataset (meta-learning) and by creating ensembles of 
algorithms without sticking to one single algorithm as 
model (model ensemble). Meta-learning is done by 
collecting performance data and set of meta-features for 
large sets of datasets. The understanding of models and their 
performance results in initiating the models with the 
hyperparameters that are likely to suit best, making the 
automated process more effective and fast. This is used in 
compliment with Bayesian optimization so that best of both 
approaches are brought out. The few drawbacks on this 
system were it lacked support for regression algorithms and 
worked poorly on large datasets.  

Fig. 4. AUTO-SKLEARN Configuration Space 

TPOT (2016) [17] introduced a new approach to the 
autoML domain by using Genetic Programming (GP).
Though focused on just classification algorithms and 
classification accuracy, it was successful in structuring 
machine learning process into set of incremental tasks of the 
entire workflow, making it easier to automate the tasks one 
by one. TPOT (Tree-based Pipeline Optimization Tool) 
contains three main tasks / Operators,

1. Feature Preprocessing Operators
2. Feature Selection Operators 
3. Supervised Classification Operators 

where each of these operators were treated as GP primitives 
and GP trees were constructed. As a structured task based 
approach was used, TPOT was very flexible, being able to 
scale and being able to add or remove more nodes in the 
pipeline easily. It also used the previous techniques of meta-
learning and model ensembles to make it an effective 
solution. 

Fig. 5. TPOT Components 

B. Semi-automated approches 
Semi-automated approaches function mainly as an 

assistant to data scientists in the machine learning tasks and 
as an initial model builder for them to improve upon, rather 
than replacing them completely. This is because of the 
reason the autoML systems are not matured enough to work 
completely independent but can give a huge boost in 
performance when worked in coordination with a human 
involvement. 

 AutoCompete (2016) [18] was a semi-automated autoML 
solution developed for a completely specific purpose: to get 
an initial statistical model in machine learning and data 
science competitions. Thakur [18] spent two years observing 
and taking part in various competitions, to build, learn and 
validate this solution. This approach doesn’t completely 
automate the process but builds the first predictive models 
for competitors to build on top of. Following the organized 
setup of TPOT, AutoCompete had following steps in the 
workflow,
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1. Datatype Identifier & Data Splitter 
2. Feature Selector & Stacker  
3. Model & Hyper-parameter Selector 

The system was even capable of automatically identifying 
machine learning type required (If text dataset is given, 
deploys Natural Language Processing algorithms), and 
avoiding over-fitting. On the downside, it was too focused on 
a specific use case, making it hard to be used as a generic 
solution and worked only on tabular datasets. 

Fig. 6. AutoCompete Components 

PennAI (2017) [18] is the first system to have a 
commercial appeal in the autoML landscape. Because the 
fully automated techniques are in very early stages, to have a 
proper product meant the system to not be fully automated. 
PennAI was introduced as a Learning Assistance that will 
not replace data scientists, rather help them find best models. 
While continuing exploration of genetic programming, this 
was solely focused on healthcare and biomedical domains. 
PennAI also had a very systematic and defined workflow,
with human involvement (dubbed Human Engine) being an 
important part of the workflow. A new feature (dubbed 
Knowledge Base) of storing the models created in previous 
operations by different users and recommending for new 
operations was introduced along with a user friendly 
Graphical User Interface. Though the product had 
commercial appeal, it supported only a selected few 
algorithms in scikit-learn package.

Fig. 7. PennAI Components 

V. KEY COMPONENTS REQUIRED

This section covers the key components involved in 
developing the system regardless of the approaches 
identified through the literature survey. A typical autoML 
system will contain 4 important components overseeing 4 
important tasks of the automated workflow. But in a more 
commercial oriented system there can be more than these 4 
components. The important components that were identified 
are as follows, 

A. Preprocessing Engine 
Preprocessing the dataset is the very first operation done. 

It is important as the dataset input can be varied and can 
have many discrepancies. The preprocessing engine takes 
care of tidying up the data and performing few 
transformations so that the subsequent parts of the workflow 
can be run smoothly. Normalization, feature standardization, 
and missing-value patching are some common 
preprocessing done regardless of data type. More focused 
preprocessing can be done with dimensionality reduction, 
grouping modalities for categorical variables, discretization 
and nonlinear transformation (e.g. log transformation). 
There can also be datatype specific preprocessing like 
punctuation removal in Natural Language Processing related 
learnings.  

B. Feature Engine 
The next step is to identify and engineer the features of 

the dataset. Getting a proper feature set influences hugely on 
the success of the learning model. Common operations 
under this engine will be feature extraction, feature 
selection, dimensionality reduction, linear manifold 
transformations (e.g. Principle Component Analysis, ICA) 
and clustering (e.g. K-means) for unsupervised learnings. 
More specified and customized feature engine operations 
can be done with embedded feature learning of the 
algorithms and non-linear dimensionality reductions like 
KPCA, MDS, LLE and Laplacian Eigenmaps. 

C. Predictor Engine 
Predictor operation is the most important component of 

an autoML system. This creates the machine learning model 
or the predictor function which will be trained and evaluated 
in the automated process. The ultimate goal of this engine is 
to find the best candidates of hyperparameters and learning 
algorithms to be passed to the next engine. In all the 
previous works a fully functional package was selected to be 
the underlying layer of the predictor engine. For example, 
Auto-WEKA uses WEKA, a Java package and AUTO-
SKLEARN uses Scikit-Learn, a Python package. Neural 
nets and Naive Bayes optimizations as predictor models 
with logistic loss function as predictor function is the most 
used and successful, so far in the existing systems. 
Alternatively, researchers have used genetic programming, 
ensembles of decision trees, linear methods, two-norm/one-
norm regularization and nearest neighbors for classification 
learning as well. 

D. Model Selection and Ensemble Engine 
Here the best suiting prediction algorithm is chosen from 

a pool of candidates from Predictor Engine. These 
candidates can be as much as infinite possibilities or can be 
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refined by processes like meta-learning to a handful best 
suiting few. For model selection, techniques like cross-
validation and leaderboards were used. Particularly in cross-
validation, K-folds and leave-one-out and for ensembling, 
boosting, out-of-bag estimation and other bagging 
techniques were used. In addition, bi-level optimization and 
knowledge transfer from one engine to the next were widely 
used to make an effective model selection. 

In a commercial oriented autoML system there can be 
few other components worth mentioning. For example, 
PennAI introduced few engines like Human Engine, 
Knowledge Base, Visualization Engine and GUI Engine. 
Though these are interesting concepts to make a user 
friendly autoML system, these doesn’t contribute much to 
the novel research of autoML.  

VI. ANALYSIS OF EXISTING WORK

In this section we analyze the main six solutions under 
two categories, 1) The learning algorithms supported and 2)
features and characteristics. 

A. Analysis of Algorithms 
Table 1 presents the comparison of the machine learning 

algorithms supported in the available work. 

TABLE I. LEARNING ALGORITHMS SUPPORTED BY AUTO-ML
SYSTEMS

Automated Semi-
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Algorithm
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Regression Learners

Gradient Boosting 6 1 1 2
Linear Regression 3 1 1 2

Random Forest 7 1 1 2
Decision Stump 0 1 1
Decision Table 4 1 1
Decision Tree 4 1 1

ElasticNet 1 1
Gaussian Processes 10 1 1

IBk 5 1 1
k-Nearest 
Neighbors 3 1 1

KStar 3 1 1
Lasso 1 1

Logistic 
Regression 1 1 1
Multilayer 
Perceptron 8 1 1

Random Tree 11 1 1
REPTree 6 1 1

Ridge 1 1
SGD 5 1 1

Simple Linear 
Regression 0 1 1

SMOre 13 1 1
Support Vector 

Machine 4 1 1
Support Vector 

Regression 1 1

ZeroR 0 1 1

Classification Learners

Random Forest 7 1 1 1 1 1 1 6
k-Nearest 
Neighbors 3 1 1 1 1 1 5
Logistic 1 1 1 1 1 4

Decision Tree  4 1 1 1 3
Gradient Boosting 6 1 1 1 3

Naïve Bayes 
Multinomial 2 1 1 1 3

Support Vector 
Machine 4 1 1 1 3

Gaussian Processes 10 1 1 2
kernel SVM 7 1 1 2

Linear Regression 3 1 1 2
Naïve Bayes 2 1 1 2

SGD 5 1 1 2
AdaBoost 4 1 1
BayesNet 2 1 1

Bernoulli Naïve 
Bayes 2 1 1

Decision Stump 0 1 1
Decision Table 4 1 1

ExtraTrees 8 1 1
extreml Random 

Trees 5 1 1
IBk 5 1 1
J48 9 1 1
JRip 4 1 1
KStar 3 1 1
LDA 4 1 1
LMT 9 1 1
M5P 4 1 1

M5Rules 4 1 1
Multilayer 
Perceptron 8 1 1

OneR 1 1 1
PART 4 1 1

passive aggressive 3 1 1
QDA 2 1 1

Random Tree 11 1 1
REPTree 6 1 1

Ridge Classifier 1 1
Simple Linear 

Regression 0 1 1
Simple Logistic 5 1 1

SMO 11 1 1
SMOreg 13 1 1

SVC 23 1 1
Voted Perceptron 3 1 1

XGBoost 1 1
ZeroR 0 1 1

Total Algorithms 
Supported -

41 6 15 5 14 13 -

Here ‘HP’ means Hyperparameters, 1 means available and missing values means not available.  

B. Features and Behavoiurs 
Table 2 presents the comparison of various features and 

behaviors found in available work. 
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TABLE II. CHARACTERISTICS OF AUTO-ML SYSTEMS

VII. WHAT IS MISSING IN EXISTING WORK

In this section we will look into the findings of the 
survey focusing on what has been missing and the common 
issues noted in the existing systems. 

Functional end products: So far the work in this 
domain is separated to two aspects of quality - Fully 
functional but research products and partly functional but 
proper end products. Since the results from fully automated 
products show inconsistency, only the semi-automated 
products have been used largely by public users. A fully 
automated industry-standard product with user friendly 
interface is still missing in this domain. 

Accessible knowledge hub: Meta-learning techniques 
in the autoML systems rely on knowledge of previous 
similar tasks but there aren’t any collaborative efforts in 
creating such libraries of statistical models. Following the 
initiatives of having open datasets for use, having a library 
of statistical models will help in advancing the autoML 
systems. 

Python-centric researches: So far except for Auto-
WEKA all other researches have been centered around 
Python. Though this is not a concern, R Language has been 
in rising popularity in the recent times in terms of data 
science researches. Having a research in R, a language 
designed solely for statistical computing will help explore 
avenues otherwise unexplored. 

Using Neural Networks: Deep Neural Networks and 
Deep Belief Networks have become feasible in the recent 
times with the increasing computation powers. Tools like 
TensorFlow have been helping in AI researches and 
AutoML problem makes a good domain to try such 
advanced neural technologies. 

VIII.CONCLUSION

Analyzing the results from the existing solutions, 
following conclusions were derived. The research area of 

autoML is something that formulated very recently and 
more initiatives are imminent before we get a fully 
automated industrial standard system. Even though several 
promising systems are developed, these are centered on a
specific domain or use case, and not suitable to be used as a 
generic solution. By using ensembling and meta-learning the 
problem of automated hyperparameter tuning can be tackled 
efficiently. More technologies and statistical concepts 
unexplored in the autoML systems will make up the 
majority of future efforts while the knowledge of previous 
efforts need to be accumulated as knowledge hubs.  

With this knowledge about the existing work, 
drawbacks of the available systems, and how they can be 
improved, we hope to come up with an architectural style in 
near future, towards an efficient automated machine 
learning system. 
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