
A Review on Automated Machine Learning
(AutoML) Systems

Thiloshon Nagarajah
University of Westminster

No 115, New Cavendish Street,
London, UK

+94 (0) 77 4209947
w1608489@my.westminster.ac.uk

Guhanathan Poravi
Informatics Institute of Technology

No 57, Ramakrishna Road,
Colombo 6, Sri Lanka

+94 (0) 77 342330
guhanathan.p@iit.ac.lk

Abstract—Automated Machine Learning is a research area
which has gained a lot of focus in the recent past. But the
various approaches followed by researchers and what has been
disclosed by the available work is neither properly documented
nor very clear due to the differences in the approaches. If the
existing work is analyzed and brought under a common
evaluation criterion, it will assist in continuing researches. This
paper presents an analysis of the existing work in the domains
of autoML, hyperparameter tuning and meta learning. The
strongholds and drawbacks of the various approaches and
their reviews in terms of algorithms supported, features and
the implementations are explored. This paper is a results of the
initial phase of an ongoing research, and in the future we hope
to make use of this knowledge to create a design that will meet
the gaps and the missing links identified.

Keywords—autoML, hyperparameter, automation, AI

I. INTRODUCTION

This section introduces the domain ‘Automated Machine
Learning’ with some background information, the identified
problem in the domain and the necessity of addressing the
problem.

A. Background
Machine learning is defined as the “field of study that

gives computers the ability to learn without being explicitly
programmed” [1]. Though machine learning makes it
possible for computers to learn without human interaction,
human effort is required when the machine learning systems
are being built [2]. In low level, machine learning systems
are just statistical modelling algorithms or ensembles of
algorithms that are developed to work well in a specific use
case. A machine learning model designed to identify cats
from dogs will not work well on detecting human age from a
picture. The statistical model built for one use case, was
developed by choosing an algorithm from many possibilities
and was tweaked as necessary so that it would work well, but
only on that particular dataset. So there is a need to create
separate statistical models to each and every dataset we come
across making the machine learning process inefficient.

According to a KDNuggets poll conducted in 2015 [3],
within next ten years, most of the expert level predictive data
science tasks will be automated. This is supported by the fact
many domain specific tools (e.g., Google Prediction API,
Google CloudML, AzureML, BigML, Dataiku, DataRobot,
KNIME, and RapidMiner) have surfaced in the near past to
automate some parts of the machine learning pipeline, while
many researches are underway to build tools that will
completely automate the process. AutoML is a term coined
in 2015 by CheLearn [4] to specify these set of tools and

researches. AutoML is defined as a “software capable of
being trained and tested without human intervention”

B. Problem & Motivation
Designing an effective learning model is often tedious

and only done well by experts with deep knowledge of
machine learning algorithms and domain expertise. Most
others just choose an algorithm by intuition and go ahead
with whatever the default values the parameters were
assigned by the learning tool they are using. Sometimes they
use brute force techniques to find the best performing model,
but with infinite possibilities of algorithms and parameters, it
becomes highly infeasible [5]. So even though the definition
of machine learning makes it seem like there won’t be any
programming required, in reality it demands large hours of
tedious programming to build a learning model.

Machine learning is arguably the center of Artificial
Intelligence with many disciplines relying on it [6]. But lack
of experts in machine learning makes the development of AI
constrained and slow paced. An off-the-shelf solution that
can be used to build learning models even by novice
developers to any given use case, will be a huge turning
point in AI world.

II. STUDY SETUP

We started gaining the necessary domain knowledge with
the literature survey. We identified three domains that are
linked with automated statistical modelling,

1. AutoML
2. Hyperparameter Tuning
3. Meta-learning

We came across 28 primary researches under these domains
and identified different types of approaches used, which is
discussed in Section 4. We identified two main such
approaches, fully-automated and semi-automated and
explored more on these. We identified six main solutions
developed by researchers with different pros and cons, as
discussed in Section 6.

III. AUTO-ML

The umbrella term AutoML coined from ‘Automated
Machine Learning’ [4] refers to the large scale automation
of a wide spectrum of the machine learning process beyond
the traditional model-creation, such as data pre-processing,
meta-learning, feature learning, model searching,
hyperparameter optimization, classification/regression,
workflows generation, data acquisition and reporting. These
black-box learning machines gained popularity after

2019 5th International Conference for Convergence in Technology (I2CT)
Pune, India. Mar 29-31, 2019

978-1-5386-8075-9/19/$31.00 ©2019 IEEE 1

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

ChaLearn initiated AutoML Competitions [4] in 2015.
Started as a ‘benchmark for automated machine learning
systems that can be operated without any human
intervention’ the challenge focused on automating
hyperparameter tuning and model selection for classification
learnings.

Even though there were many promising systems
emerged from these competitions and recently we have been
introduced to some commercial level AutoML systems by
Google [7] and H2O.ai [8], the majority of the concepts and
researches are in a very early stages. Researchers have used
varieties of statistical theories like regularization, Bayesian
priors, Minimum Description Length (MDL), Structural
Risk Minimization (SRM), bias/variance tradeoff and
genetic programming to tackle the autoML problem but
ending up in a very distinct and inconsistent results. Further
researches are required to find the best suiting techniques
that are generic and works consistently.

Two main concepts in this research area, hyperparameter
tuning and meta-learning are analyzed below,

A. Hyper-parameter tuning
Machine learning algorithms are in fact statistical

functions aimed at minimizing some variant of a cost
function. The cost function depends on a set of parameters
called hyperparameters that make up the algorithm. For a
specific dataset, to get the efficient learning model the
parameters need to be set to the optimal value specific to
that dataset. Till recent past, hand-tuning these parameters
by domain experts have been the only way to find the
parameter setting [9]. Since the hyperparameters can take up
any value, choosing the optimal one becomes extremely
tedious. Recently however, hyperparameter optimization
techniques like Regression Trees, Gaussian Processes and
density-estimation have been used to automate this tuning
process.

The concept of hyperparameter optimization was
originated in neural networks as there can be overwhelming
number of parameters in a neural network. Later these
concepts were needed even in machine learning domains
with few hyperparameters, as datasets tend to become too
large to hand-tune. Bayesian optimization has emerged as a
successful candidate for hyperparameter tuning. It is a
probabilistic model that captures relationship between
hyperparameter settings and their performance, and uses this
model to iteratively evaluate, choose and update the most
promising settings. Techniques like random search and grid
search [10] are used underneath these approaches.

B. Meta-learning
Meta-learning is yet another concept getting popularity

in the recent times. Each model trained on a dataset
contributes to the understanding of the data. Even if a model
performed poorly, that says something about the dataset.
These results combined, can create a knowledge system that
can be used on similar datasets. This is the concept behind
meta-learning. Meta-learning uses attributes like data set
size, the number of features, and various aspects about the
features along with the performance data. It is used to find
good instantiations of learning models from the knowledge
of previous tasks [11]. When this data generated by
researches all over the world, is stored and continuously
updated in a public repository, it creates an invaluable

knowledge ecosystem that can help build an effective
machine learning workflow.

IV. EXISTING WORK

The existing work on tracking framework evolution and
code generation is presented in this section.

There has been substantial interest in researches around
autoML systems in the recent past. Thornton [12] was one of
the earliest researchers to propose hyperparameter tuning. He
used Sequential Model-based Bayesian Optimization to
achieve automation in parameter tuning. Several researchers
followed his initial work and improved the concept further.

Fig. 1. Typical design of an autoML system

We can categorize possible approaches to track
framework evolution, into two main types,

1) Automated approches
2) Semi-automated apporaches

A. Automated approches
Automated approaches try to completely automate the

machine learning process. Even though it is the ultimate
goal of all these researches, a complete automation has
proved to be very challenging task even after the current
technological advancements. We identified four researches
which have achieved varied success in complete automation
and analyzed their work.

Auto-WEKA (2012) [12] is the earliest research
involved in automating the learning process. They
formulated the problem into a formal study area dubbed
‘Combined Algorithm Selection and Hyperparameter
optimization’ (CASH) problem. They came up with a
concept to optimize empirical performance by automatically
choosing an algorithm from WEKA Java package and its
hyperparameters for a given dataset. Auto-WEKA used
Bayesian Optimization techniques, and in particular
Sequential Model-based Optimization that can work in both
categorical and continuous hyperparameters. It iteratively
calculates the dependence of cross-validation loss function
of a hyperparameter setting, uses machine learning to
choose the best candidate configuration of hyperparameters
and updates the model with new datapoint obtained. In 2017
Auto-WEKA 2.0 [13] was released improving on the first
package by adding support for regression algorithms and
parallel runs. It also considered tree-based Bayesian
optimization methods as it yielded more promising results
than the predecessor. In the comparisons below we consider
both Auto-WEKA and Auto-WEKA 2.0 to be the same.

2

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Auto-WEKA Parameter Space

Hyperopt-Sklearn (2014) [14] was heavily inspired by
Auto-WEKA with more focused on bringing similar
functionalities to python. It uses the infamous Scikit-learn
python package [15] as algorithms base with the underlying
concepts being similar to Auto-WEKA. It sets up
hyperparameters as a search space of random variables and
uses Scikit-learn algorithms to train and validate the model
based on the objective function and finally uses hyperopt
optimization library to optimize parameters. The objective
function is typically cross-validation, the negative degree of
success on held-out samples. It also improved the scalability
issues found in Auto-WEKA.

Fig. 3. Hyperopt Search Space

AUTO-SKLEARN (2015) [16] continued on the CASH
problem introduced in Auto-WEKA and improved the
existing autoML concepts like Bayesian optimization by
making use of performance data of the past tries on similar
dataset (meta-learning) and by creating ensembles of
algorithms without sticking to one single algorithm as
model (model ensemble). Meta-learning is done by
collecting performance data and set of meta-features for
large sets of datasets. The understanding of models and their
performance results in initiating the models with the
hyperparameters that are likely to suit best, making the
automated process more effective and fast. This is used in
compliment with Bayesian optimization so that best of both
approaches are brought out. The few drawbacks on this
system were it lacked support for regression algorithms and
worked poorly on large datasets.

Fig. 4. AUTO-SKLEARN Configuration Space

TPOT (2016) [17] introduced a new approach to the
autoML domain by using Genetic Programming (GP).
Though focused on just classification algorithms and
classification accuracy, it was successful in structuring
machine learning process into set of incremental tasks of the
entire workflow, making it easier to automate the tasks one
by one. TPOT (Tree-based Pipeline Optimization Tool)
contains three main tasks / Operators,

1. Feature Preprocessing Operators
2. Feature Selection Operators
3. Supervised Classification Operators

where each of these operators were treated as GP primitives
and GP trees were constructed. As a structured task based
approach was used, TPOT was very flexible, being able to
scale and being able to add or remove more nodes in the
pipeline easily. It also used the previous techniques of meta-
learning and model ensembles to make it an effective
solution.

Fig. 5. TPOT Components

B. Semi-automated approches
Semi-automated approaches function mainly as an

assistant to data scientists in the machine learning tasks and
as an initial model builder for them to improve upon, rather
than replacing them completely. This is because of the
reason the autoML systems are not matured enough to work
completely independent but can give a huge boost in
performance when worked in coordination with a human
involvement.

 AutoCompete (2016) [18] was a semi-automated autoML
solution developed for a completely specific purpose: to get
an initial statistical model in machine learning and data
science competitions. Thakur [18] spent two years observing
and taking part in various competitions, to build, learn and
validate this solution. This approach doesn’t completely
automate the process but builds the first predictive models
for competitors to build on top of. Following the organized
setup of TPOT, AutoCompete had following steps in the
workflow,

3

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

1. Datatype Identifier & Data Splitter
2. Feature Selector & Stacker
3. Model & Hyper-parameter Selector

The system was even capable of automatically identifying
machine learning type required (If text dataset is given,
deploys Natural Language Processing algorithms), and
avoiding over-fitting. On the downside, it was too focused on
a specific use case, making it hard to be used as a generic
solution and worked only on tabular datasets.

Fig. 6. AutoCompete Components

PennAI (2017) [18] is the first system to have a
commercial appeal in the autoML landscape. Because the
fully automated techniques are in very early stages, to have a
proper product meant the system to not be fully automated.
PennAI was introduced as a Learning Assistance that will
not replace data scientists, rather help them find best models.
While continuing exploration of genetic programming, this
was solely focused on healthcare and biomedical domains.
PennAI also had a very systematic and defined workflow,
with human involvement (dubbed Human Engine) being an
important part of the workflow. A new feature (dubbed
Knowledge Base) of storing the models created in previous
operations by different users and recommending for new
operations was introduced along with a user friendly
Graphical User Interface. Though the product had
commercial appeal, it supported only a selected few
algorithms in scikit-learn package.

Fig. 7. PennAI Components

V. KEY COMPONENTS REQUIRED

This section covers the key components involved in
developing the system regardless of the approaches
identified through the literature survey. A typical autoML
system will contain 4 important components overseeing 4
important tasks of the automated workflow. But in a more
commercial oriented system there can be more than these 4
components. The important components that were identified
are as follows,

A. Preprocessing Engine
Preprocessing the dataset is the very first operation done.

It is important as the dataset input can be varied and can
have many discrepancies. The preprocessing engine takes
care of tidying up the data and performing few
transformations so that the subsequent parts of the workflow
can be run smoothly. Normalization, feature standardization,
and missing-value patching are some common
preprocessing done regardless of data type. More focused
preprocessing can be done with dimensionality reduction,
grouping modalities for categorical variables, discretization
and nonlinear transformation (e.g. log transformation).
There can also be datatype specific preprocessing like
punctuation removal in Natural Language Processing related
learnings.

B. Feature Engine
The next step is to identify and engineer the features of

the dataset. Getting a proper feature set influences hugely on
the success of the learning model. Common operations
under this engine will be feature extraction, feature
selection, dimensionality reduction, linear manifold
transformations (e.g. Principle Component Analysis, ICA)
and clustering (e.g. K-means) for unsupervised learnings.
More specified and customized feature engine operations
can be done with embedded feature learning of the
algorithms and non-linear dimensionality reductions like
KPCA, MDS, LLE and Laplacian Eigenmaps.

C. Predictor Engine
Predictor operation is the most important component of

an autoML system. This creates the machine learning model
or the predictor function which will be trained and evaluated
in the automated process. The ultimate goal of this engine is
to find the best candidates of hyperparameters and learning
algorithms to be passed to the next engine. In all the
previous works a fully functional package was selected to be
the underlying layer of the predictor engine. For example,
Auto-WEKA uses WEKA, a Java package and AUTO-
SKLEARN uses Scikit-Learn, a Python package. Neural
nets and Naive Bayes optimizations as predictor models
with logistic loss function as predictor function is the most
used and successful, so far in the existing systems.
Alternatively, researchers have used genetic programming,
ensembles of decision trees, linear methods, two-norm/one-
norm regularization and nearest neighbors for classification
learning as well.

D. Model Selection and Ensemble Engine
Here the best suiting prediction algorithm is chosen from

a pool of candidates from Predictor Engine. These
candidates can be as much as infinite possibilities or can be

4

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

refined by processes like meta-learning to a handful best
suiting few. For model selection, techniques like cross-
validation and leaderboards were used. Particularly in cross-
validation, K-folds and leave-one-out and for ensembling,
boosting, out-of-bag estimation and other bagging
techniques were used. In addition, bi-level optimization and
knowledge transfer from one engine to the next were widely
used to make an effective model selection.

In a commercial oriented autoML system there can be
few other components worth mentioning. For example,
PennAI introduced few engines like Human Engine,
Knowledge Base, Visualization Engine and GUI Engine.
Though these are interesting concepts to make a user
friendly autoML system, these doesn’t contribute much to
the novel research of autoML.

VI. ANALYSIS OF EXISTING WORK

In this section we analyze the main six solutions under
two categories, 1) The learning algorithms supported and 2)
features and characteristics.

A. Analysis of Algorithms
Table 1 presents the comparison of the machine learning

algorithms supported in the available work.

TABLE I. LEARNING ALGORITHMS SUPPORTED BY AUTO-ML
SYSTEMS

Automated Semi-
automate

Algorithm

of

 H
P

A
ut

o-
W

E
K

A

H
yp

er
op

t-
Sk

le
ar

n

A
U

T
O

-S
K

L
E

A
R

N

TP
O

T

A
ut

o-
C

om
pe

te

Pe
nn

A
I T

ot
al

Regression Learners

Gradient Boosting 6 1 1 2
Linear Regression 3 1 1 2

Random Forest 7 1 1 2
Decision Stump 0 1 1
Decision Table 4 1 1
Decision Tree 4 1 1

ElasticNet 1 1
Gaussian Processes 10 1 1

IBk 5 1 1
k-Nearest
Neighbors 3 1 1

KStar 3 1 1
Lasso 1 1

Logistic
Regression 1 1 1
Multilayer
Perceptron 8 1 1

Random Tree 11 1 1
REPTree 6 1 1

Ridge 1 1
SGD 5 1 1

Simple Linear
Regression 0 1 1

SMOre 13 1 1
Support Vector

Machine 4 1 1
Support Vector

Regression 1 1

ZeroR 0 1 1

Classification Learners

Random Forest 7 1 1 1 1 1 1 6
k-Nearest
Neighbors 3 1 1 1 1 1 5
Logistic 1 1 1 1 1 4

Decision Tree 4 1 1 1 3
Gradient Boosting 6 1 1 1 3

Naïve Bayes
Multinomial 2 1 1 1 3

Support Vector
Machine 4 1 1 1 3

Gaussian Processes 10 1 1 2
kernel SVM 7 1 1 2

Linear Regression 3 1 1 2
Naïve Bayes 2 1 1 2

SGD 5 1 1 2
AdaBoost 4 1 1
BayesNet 2 1 1

Bernoulli Naïve
Bayes 2 1 1

Decision Stump 0 1 1
Decision Table 4 1 1

ExtraTrees 8 1 1
extreml Random

Trees 5 1 1
IBk 5 1 1
J48 9 1 1
JRip 4 1 1
KStar 3 1 1
LDA 4 1 1
LMT 9 1 1
M5P 4 1 1

M5Rules 4 1 1
Multilayer
Perceptron 8 1 1

OneR 1 1 1
PART 4 1 1

passive aggressive 3 1 1
QDA 2 1 1

Random Tree 11 1 1
REPTree 6 1 1

Ridge Classifier 1 1
Simple Linear

Regression 0 1 1
Simple Logistic 5 1 1

SMO 11 1 1
SMOreg 13 1 1

SVC 23 1 1
Voted Perceptron 3 1 1

XGBoost 1 1
ZeroR 0 1 1

Total Algorithms
Supported -

41 6 15 5 14 13 -

Here ‘HP’ means Hyperparameters, 1 means available and missing values means not available.

B. Features and Behavoiurs
Table 2 presents the comparison of various features and

behaviors found in available work.

5

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

TABLE II. CHARACTERISTICS OF AUTO-ML SYSTEMS

VII. WHAT IS MISSING IN EXISTING WORK

In this section we will look into the findings of the
survey focusing on what has been missing and the common
issues noted in the existing systems.

Functional end products: So far the work in this
domain is separated to two aspects of quality - Fully
functional but research products and partly functional but
proper end products. Since the results from fully automated
products show inconsistency, only the semi-automated
products have been used largely by public users. A fully
automated industry-standard product with user friendly
interface is still missing in this domain.

Accessible knowledge hub: Meta-learning techniques
in the autoML systems rely on knowledge of previous
similar tasks but there aren’t any collaborative efforts in
creating such libraries of statistical models. Following the
initiatives of having open datasets for use, having a library
of statistical models will help in advancing the autoML
systems.

Python-centric researches: So far except for Auto-
WEKA all other researches have been centered around
Python. Though this is not a concern, R Language has been
in rising popularity in the recent times in terms of data
science researches. Having a research in R, a language
designed solely for statistical computing will help explore
avenues otherwise unexplored.

Using Neural Networks: Deep Neural Networks and
Deep Belief Networks have become feasible in the recent
times with the increasing computation powers. Tools like
TensorFlow have been helping in AI researches and
AutoML problem makes a good domain to try such
advanced neural technologies.

VIII.CONCLUSION

Analyzing the results from the existing solutions,
following conclusions were derived. The research area of

autoML is something that formulated very recently and
more initiatives are imminent before we get a fully
automated industrial standard system. Even though several
promising systems are developed, these are centered on a
specific domain or use case, and not suitable to be used as a
generic solution. By using ensembling and meta-learning the
problem of automated hyperparameter tuning can be tackled
efficiently. More technologies and statistical concepts
unexplored in the autoML systems will make up the
majority of future efforts while the knowledge of previous
efforts need to be accumulated as knowledge hubs.

With this knowledge about the existing work,
drawbacks of the available systems, and how they can be
improved, we hope to come up with an architectural style in
near future, towards an efficient automated machine
learning system.

REFERENCES

[1] P. Simon, “Too Big to Ignore: The Business Case for Big Data,” p.
25, 2013.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for
Hyper-Parameter Optimization,” p. 9.

[3] I. Guyon et al., “A brief Review of the ChaLearn AutoML
Challenge:,” p. 10, 2016.

[4] I. Guyon et al., “Design of the 2015 ChaLearn AutoML challenge,”
2015, pp. 1–8.

[5] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential Model-
Based Optimization for General Algorithm Configuration,” in
Learning and Intelligent Optimization, vol. 6683, C. A. C. Coello, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 507–523.

[6] R. S. Olson et al., “A System for Accessible Artificial Intelligence,”
ArXiv170500594 Cs, May 2017.

[7] Q. Le and B. Zoph, “Using Machine Learning to Explore Neural
Network Architecture,” Using Machine Learning to Explore Neural
Network Architecture, 17-May-2017. .

[8] H2O.ai, “AutoML: Automatic Machine Learning,” AutoML:
Automatic Machine Learning. .

[9] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative
hyperparameter tuning,” p. 9.

[10] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-Thaw Bayesian
Optimization,” ArXiv14063896 Cs Stat, Jun. 2014.

[11] M. Feurer, J. T. Springenberg, and F. Hutter, “Initializing Bayesian
Hyperparameter Optimization via Meta-Learning,” p. 8.

[12] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms,” ArXiv12083719 Cs, Aug. 2012.

[13] L. Kottho , C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-WEKA 2.0: Automatic model selection and
hyperparameter optimization in WEKA,” p. 5.

[14] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn:
Automatic Hyperparameter Configuration for Scikit-Learn,” p. 7,
2014.

[15] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,”
ArXiv12010490 Cs, Jan. 2012.

[16] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and Robust Automated Machine Learning,” p. 9.

[17] R. S. Olson, “TPOT: A Tree-based Pipeline Optimization Tool for
Automating Machine Learning,” p. 9.

[18] A. Thakur and A. Krohn-Grimberghe, “AutoCompete: A Framework
for Machine Learning Competition,” ArXiv150702188 Cs Stat, Jul.
2015.

Feature
Au

to
-W

EK
A

H
yp

er
op

t-
Sk

le
ar

n

AU
TO

-
SK

LE
AR

N

TP
O

T

Au
to

Co
m

pe
te

Pe
nn

AI

Language Java Pytho
n

Pytho
n

Python Pytho
n

Python

Algorithm
Source

WEK
A

Scikit
-learn

Scikit
-learn

Scikit-
learn

- Scikit-
learn

Predictor
Algorithm

Bayes
ian

Hyper
opt

Bayes
ian

Genetic
Progra
mming

Grid-
search

Genetic
Progra
mming

Ensemble
s

0 0 1 1 0 0

Meta
Learning

0 0 0 1 0 1

6

Authorized licensed use limited to: Informatics Institute of Technology. Downloaded on May 23,2020 at 02:09:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

