
Informatics Institute of Technology

In collaboration with

University of Westminster, UK

Cloud-native Dynamic Scalability for Distributed

Stream Processing Systems

A Dissertation By

Senthuran Ambalavanar

2015215 | w1608452

Supervised By

Mr. Saman Hettiarachchi

Submitted in partial fulfilment of the requirements for the

BEng (Hons) Software Engineering degree

Department of Computing

May 2019

© The copyright for this project and all its associated products resides with

Informatics Institute of Technology

Cloud-native Dynamic Scalability for Distributed Stream Processing Systems

Abstract

Distributed stream processing systems separate streaming applications into executable smaller units

known as child streaming applications, distribute them across several nodes in clusters and run, in

order to cater heavy and growing stream processing use cases. Due to the tremendous benefits

provided by cloud infrastructures, distributed stream processing systems are often adopted to be

deployed on cloud environments. Scalability is one of the common goals addressed by such

systems. With varying amount of resource and event consumptions during the time of execution, the

ability of individually scaling each child streaming application as required, increases the efficiency

of scalability.

Some child streaming applications frequently communicate with their required resources, such as a

MySQL database. In cloud environments, network overheads are possible, when the resource and

the consuming child streaming application are located in different nodes within the cluster.

Focusing on scaling stateless operators in Kubernetes environment, this project addresses these

concerns through a framework, for stream processors that offer text-based streaming application

development.

By natively using Kubernetes container orchestrator to create dedicated Workers for executing child

streaming applications, the framework addresses the concern of individually scaling each child

streaming application that has different event consumption rates, as required.

Collocation of a special resource and its consumer in the same node of the cluster, will reduce

possible network overheads, which can facilitate scalability. This has been achieved with

Kubernetes pod affinity. A resource requirement for a child streaming application is identified at the

time of parsing it, and the containing Worker is applied with labels in order to be eligible for pod

affinity based scheduling. By natively using Kubernetes for resource management, the project

improves resource utilisation and latency of distributed stream processing systems in cloud

environments, and produces a reliable and easy to deploy solution.

Keywords:

Cloud computing, Distributed Stream Processing, Container Orchestrator, Dynamic Scaling,

Dynamic Scheduling, Streaming Application

Senthuran Ambalavanar - 2015215 | w1608452 ii

	2. Chapter 2: Project Management
	2.1. Chapter Overview
	2.2. Research Methodology
	2.3. Design Methodology
	2.4. Software Development Methodology
	2.5. Evaluation Methodology
	2.6. Potential Risks and Mitigation Plans
	2.7. Activity Schedule
	2.8. Social, Legal, Ethical and Professional Aspects
	2.9. Chapter Summary

	3. Chapter 3: Literature Review
	3.1. Chapter Overview
	3.2. Deployment of Distributed Stream Processing Systems on cloud
	3.3. Key success factors of dynamic scaling DSPSs
	3.4. Scalability in cloud and Review on Existing systems
	3.4.1. Horizontal Scaling techniques
	3.4.2. Metrics for Dynamically scaling DSPSs

	3.5. Scheduling in DSPSs and Review on Existing systems
	3.5.1. Scheduling Objectives
	3.5.2. Scheduling Approaches
	3.5.3. Dynamic Scheduling Techniques
	3.5.4. Pod Scheduling in Kubernetes Environment
	3.5.5. Provisioning of nodes in dynamic scheduling

	3.6. Research Contribution/Research Gap
	3.7. Chapter Summary

	4. Chapter 4: Requirements Specification
	4.1. Chapter Overview
	4.2. Stakeholder Analysis
	4.2.1. Onion Model
	4.2.2. Roles and viewpoints of Stakeholders

	4.3. Requirement Elicitation Process
	4.3.1. Selection of Requirement Elicitation Techniques
	4.3.2. Execution of Requirement Elicitation Techniques
	4.3.2.1. Literature Review
	4.3.2.2. Observation
	4.3.2.3. Brainstorming
	4.3.2.4. Formal Discussions

	4.4. Findings Derived from Requirement Elicitation
	4.5. Context Diagram
	4.6. Use-case Diagram
	4.7. Use-case Descriptions
	4.8. Activity Diagram
	4.9. Functional Requirements
	4.10. Non-functional Requirements
	4.11. Scope Refinement
	4.12. Chapter Summary

	5. Chapter 5: Design
	5.1. Chapter Overview
	5.2. Design Methodology
	5.3. Design Goals
	5.4. Selection of Architectural Styles
	5.5. High Level Architecture of the System
	5.5.1. Business Logic Layer
	5.5.2. Data Layer
	5.5.3. Presentation Layer

	5.6. Low Level Design Models
	5.6.1. Class Diagrams
	5.6.2. Sequence Diagrams
	5.6.3. Deployment Diagram

	5.7. Chapter Summary

	6. Chapter 6: Implementation
	6.1. Chapter Overview
	6.2. Selection of Technologies
	6.2.1. Selection of Programming Language
	6.2.2. Selection of Libraries
	6.2.3. Selection of the Stream Processor

	6.3. Selection of Tools
	6.3.1. Selection of IDE
	6.3.2. Selection of Version Control System

	6.4. Technology Stack
	6.5. Implementation of Components
	6.5.1. Kubernetes Manager Module
	6.5.1.1. Operator
	6.5.1.2. Deployment Manager
	6.5.1.3. Child Apps Handler
	6.5.1.4. Manager Client
	6.5.1.5. Metrics Manager

	6.5.2. Kubernetes Manager API
	6.5.3. Job Manager Module
	6.5.3.1. Kubernetes Child App Deployer
	6.5.3.2. Worker Pods Monitor
	6.5.3.3. Child Apps Handler
	6.5.3.4. Resource Requirement Detectors

	6.5.4. Screenshots

	6.6. Chapter Summary

	7. Chapter 7: Testing
	7.1. Chapter Overview
	7.2. Testing Goals
	7.3. Testing Criteria
	7.4. Unit Testing
	7.4.1. Unit Testing Tools

	7.5. Integration Testing
	7.6. System Testing
	7.7. Scalability Testing
	7.7.1. Selection of the Metrics Type
	7.7.2. Decision of the threshold value
	7.7.3. Scalability Testing Scenario

	7.8. Testing Remarks
	7.9. Chapter Summary

	8. Chapter 8: Evaluation
	8.1. Chapter Overview
	8.2. Evaluation Goals
	8.3. Evaluation Criteria
	8.4. Selection of Evaluators
	8.5. Evaluation of the Concept and Scope
	8.6. Evaluation of Technical Aspects
	8.7. Evaluation of Usefulness and Impact
	8.8. Limitations and Future Enhancements
	8.9. Research Questions and Answers
	8.10. Self Evaluation
	8.10.1. Evaluation of the Concept and Scope
	8.10.2. Evaluation of Technical Aspects
	8.10.3. Evaluation of Usefulness and Impact
	8.10.4. Limitations and Future Enhancements

	8.11. Chapter Summary

	9. Chapter 9: Conclusion
	9.1. Chapter Overview
	9.2. Achievement of Aim and Objectives
	9.2.1. Achievement of the Project Aim
	9.2.2. Achievement of Research Objectives
	9.2.3. Achievement of Personal Objectives

	9.3. Achievement of Requirements
	9.3.1. Achievement of Functional Requirements
	9.3.2. Achievement of Non-functional Requirements

	9.4. Milestones and Deliverables
	9.5. Problems and Challenges Faced
	9.6. Limitations of the Project
	9.7. Learning Outcomes
	9.8. Future Enhancements
	9.9. Concluding Remarks

	References
	Appendix
	Appendix A1: Activity Schedule
	Appendix B1: Use Case Descriptions
	Appendix C1: Unit Testing Test Cases

