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Cloud-native Dynamic Scalability for Distributed Stream Processing Systems

Abstract

Distributed stream processing systems separate streaming applications into executable smaller units

known as child streaming applications, distribute them across several nodes in clusters and run, in

order to cater heavy and growing stream processing use cases.  Due to the tremendous benefits

provided by cloud infrastructures, distributed stream processing systems are often adopted to be

deployed  on  cloud  environments.  Scalability  is  one  of  the  common  goals  addressed  by  such

systems. With varying amount of resource and event consumptions during the time of execution, the

ability of individually scaling each child streaming application as required, increases the efficiency

of scalability.

Some child streaming applications frequently communicate with their required resources, such as a

MySQL database. In cloud environments, network overheads are possible, when the resource and

the consuming child streaming application are located in different nodes within the cluster.

Focusing on scaling stateless operators  in  Kubernetes  environment,  this  project  addresses these

concerns through a framework, for stream processors that offer text-based streaming application

development.

By natively using Kubernetes container orchestrator to create dedicated Workers for executing child

streaming applications,  the  framework addresses  the  concern of  individually scaling each child

streaming application that has different event consumption rates, as required.

Collocation of a special resource and its consumer in the same node of the cluster, will reduce

possible  network  overheads,  which  can  facilitate  scalability.  This  has  been  achieved  with

Kubernetes pod affinity. A resource requirement for a child streaming application is identified at the

time of parsing it, and the containing Worker is applied with labels in order to be eligible for pod

affinity  based  scheduling.  By  natively  using  Kubernetes  for  resource  management,  the  project

improves  resource  utilisation  and  latency  of  distributed  stream  processing  systems  in  cloud

environments, and produces a reliable and easy to deploy solution.
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